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1 Facultad de Matemáticas, Astronomı́a y Fı́sica, Universidad Nacional de Córdoba,
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Abstract
We analyse the dynamics of adsorbed molecules within the bulk-mediated
surface diffusion framework. We consider that the particle’s desorption
mechanism is characterized by a non-Markovian process, while the particle’s
adsorption and its motion in the bulk are governed by Markovian dynamics,
and include the effect of an external field in the form of a bias in the normal
motion to the surface. We study this system for the diffusion of particles in a
semi-infinite lattice, analysing the conditional probability to find the system on
the reference absorptive plane as well as the surface dispersion as functions of
time. The agreement between numerical and analytical asymptotic results is
discussed.

1. Introduction

Since the pioneering works of Einstein, Smoluchovski and Langevin [1], the study of diffusion
processes has pervaded all areas of sciences and technology. During the last few decades,
the literature on diffusion processes has ranged from some formal mathematical aspects [2],
through diffusion-limited reactions [3] and anomalous diffusion or diffusion in disordered
systems [4], to heat conductivity in solids [5] as well as other diffusion problems in material
science [6]. Even the description of some problems in cardiology, biology and sociology have
found and adequate framework in the diffusion approach [7]. Among the many problems
studied in material science, the dynamics of adsorbed molecules at an adsorbing surface is a
fundamental issue in interface science and is crucial to a number of emerging technologies [8]
(for instance, see [9–12] and references therein).

Recently, the mechanism called bulk-mediated surface diffusion has been identified and
explored [13, 14]. The importance of bulk–surface exchange in relaxing homogeneous surface
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density perturbations is experimentally well established [15–20]. This mechanism typically
arises at interfaces separating a liquid bulk phase and a second phase which may be either solid,
liquid, or gaseous. Whenever the adsorbed species are soluble in the liquid bulk, adsorption–
desorption processes occur continuously. These processes generate surface displacement
because desorbed molecules undergo Fickian diffusion in the liquid’s bulk, and are latter
re-adsorbed elsewhere. When this process is repeated many times, an effective diffusion
results for the molecules on the surface. Recent experiments [21] have demonstrated that the
hydrodynamic flow has a strong effect on spin–lattice relaxation in water filled into a porous
monolithic silica material. This is a rotational analogue of the translational hydrodynamic
dispersion arising from incoherent Brownian motion in combination with coherent (or biased)
flow. These results directly verify bulk-mediated surface diffusion, revealing in this way
interfacial slip at fluid–solid interfaces.

Usually the studies performed in this type of system are done within the framework of
a master equation scheme [13, 14, 22], where the particle’s motion through the bulk and the
adsorption–desorption processes are Markovian. In a series of recent papers we have shown
some of the most important features of this phenomenon [9–12]: in particular, by studying the
variance 〈r2(t)〉plane of the position �r ≡ (x, y) on the interface, or the conditional probability
P(z = 1, t) ≡ ∑

x,y P(x, y, z = 1; t|0, 0, 1; t = 0) to find the particle on the interface at time
t , if it was initially at (0, 0, 1), through both analytical and numerical methods; the following
results were obtained. For the case of a semi-infinite or unbounded bulk [9]

• for t → ∞, the effective diffusion on the interface (first layer of the lattice) is always
sub-diffusive (the variance of the position grows as t1/2) regardless of the desorption rate
δ. Similarly, the probability to find the particle on the interface at time t decays as t−1/2,
independently of δ;

• at finite times, the growth of the variance can be fitted by a tε law. The exponent ε depends
on the range of time considered and the values of the adsorption and diffusion constants,
increasing rapidly as δ decreases and saturating at a value compatible with the one reported
in [13, 14];

• an effective continuous-time random walk (CTRW) description (without conservation of
probability) was derived on the interface.

For the finite or bounded bulk case [10], we have investigated the transition from a multilayered
to unbounded bulk regime, and found that

• there exists an optimal number of layers that maximizes 〈r2(t)〉plane on the interface (which
is a measure of the effective diffusivity);

• and up to about that thickness, the long time effective diffusivity on the interface has normal
character, and crosses over abruptly towards a sub-diffusive behaviour as the number of
layers increases further.

It is worth remarking here that for an arbitrary (finite) number of layers, the Laplace transform
usually cannot be analytically inverted. This forced us to apply numerical inversion methods
whose efficacy has been tested—with excellent results—not only against analytically solvable
cases, like the bilayer one, but also against Monte Carlo simulations.

For the finite and infinite bulk cases, we have also investigated the situation when
the particle’s desorption is characterized by a non-Markovian process, while the particle’s
adsorption and its motion in the bulk are governed by a Markovian dynamics. We have found
that [11, 12]
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• for any non-Markovian desorption waiting time density with a finite first moment, the long
time behaviour of both 〈r2(t)〉plane and P(z = 1, t) is the same as in the Markovian case
and only depends on the first moment of the waiting time function ψ(t);

• for some class of non-Markovian desorption waiting time densities, in the ‘strong
adsorption’ limit, there are two regimes: a transient and a stationary one. The main
feature of the transient regime is that it is characterized by damped oscillations whose
frequencies are in direct relation to the average desorption rate. Such an oscillatory effect
disappear in the ‘weak adsorption’ region;

• it was analytically shown that, when the waiting time density for desorption has an infinite
first moment, an asymptotic sub-diffusive regime appears for all values of ν (a parameter
that characterizes the behaviour of the ‘tail’ of ψ(t), 0 < ν < 1), except for ν = 1

2 where
normal diffusion takes place.

In this work we address the dynamics of adsorbed molecules when, in addition to the
particle’s desorption mechanism being characterized by a non-Markovian process, while the
particle’s adsorption and its motion in the bulk are governed by a Markovian dynamics, there
is a biased behaviour for the motion along the vertical axis (that is, we consider the effect of
some external field normal to the interface). Diffusion in the presence of a biasing field is of
great interest in several areas such as positron tomography [23], where the addition of a strong
electric field perpendicular to the surface leads to greater sample penetration, the analysis of
wetting layer growth under the action of a uniform gravitational field [24], particle segregation
due to shaking in a gravitational field [25], and the steady-state regime due to a small field in
two-dimensional diffusing reactants [26].

As is well known, a non-Markovian desorption process can occur when the surface contains
‘deep traps’, capture and re-emission from a surface that contains sites with several internal
states such as the ‘ladder trapping model’, proteins with active sites deep inside its matrix,
etc [27, 28]. It is worth remarking that, when non-Markovian process are present, it is necessary
to resort to generalized master equations. These equations are characterized by a ‘memory
kernel’ and may be related univocally with a CTRW scheme (for instance, see the paper by
Montroll in [2]).

The main goal of this work is to study the influence of both the non-Markovian desorption
and the indicated biased dynamics on the effective diffusion process at the interface z = 1. For
that purpose we calculate the temporal evolutions of the variance (〈r2(t)〉plane) and P(z = 1, t),
which (as indicated above) is the conditional probability of finding the particle on the surface
at time t since the particle arrived there at t = 0.

In the next section we formally present the model, in terms of a generalized master equation
which describes the particle’s dynamics through the bulk and surface, and its desorption. We
indicate the differences that are introduced into the formalism by the non-Markovian desorption
process and the biased behaviour. In the following section we discuss the asymptotic behaviour
when the waiting time density has a long or a short time tail. After that, we present some
numerical results for the non-Markovian desorption and biased case for infinite systems when
the memory function has both short or long time tails. Finally, in the last section we discuss
the results and present some conclusions.

2. The adsorption–desorption model: simultaneous non-Markovian and biased case

Here we consider the case of non-Markovian desorption. We use the same framework as
in [11, 12]. Now P(n,m, l; t) satisfies the following generalized master equation:

Ṗ(n,m, 1; t) = γ1 P(n,m, 2; t) −
∫ t

0
dt ′ K (t ′)P(n,m, 1; t − t ′),
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+ α1[P(n − 1,m, 1; t) + P(n + 1,m, 1; t)− 2P(n,m, 1; t)]

+ β1[P(n,m − 1, 1; t) + P(n,m + 1, 1; t)− 2P(n,m, 1; t)], for l = 1

Ṗ(n,m, 2; t) =
∫ t

0
dt ′ K (t ′)P(n,m, 1; t − t ′)

+ γ1 P(n,m, 3; t)− γ2 P(n,m, 2; t) − γ1 P(n,m, 2; t)

+ α[P(n − 1,m, 2; t) + P(n + 1,m, 2; t)− 2P(n,m, 2; t)]

+ β[P(n,m − 1, 2; t) + P(n,m + 1, 2; t)− 2P(n,m, 2; t)], for l = 2

Ṗ(n,m, l; t) = α[P(n − 1,m, l; t) + P(n + 1,m, l; t)− 2P(n,m, l; t)]

+ β[P(n,m − 1, l; t) + P(n,m + 1, l; t)− 2P(n,m, l; t)]

+ γ1[P(n,m, l + 1; t)− P(n,m, l; t)] + γ2[P(n,m, l − 1; t)

− P(n,m, l; t)], for l � 3

(1)

whereα andβ are the transition probabilities per unit time through the bulk in the x , y directions
respectively, while γ1 and γ2 are the transition probabilities per unit time through the bulk in
the z direction that, when γ1 �= γ2, indicates a biased behaviour (or the presence of an external
field). It is important to note that the model presented in equation (1) allows for the possibility
that the particles can move in the plane z = 1 with temporal frequencies α1 in the x direction
and β1 in the y direction. If these temporal frequencies are equal to zero, the motion through
the z = 1 plane is exclusively due to the dynamics across the bulk. K (t) represents the memory
kernel for desorption at all sites over the z = 1 surface (that is for (n,m, l = 1)). It is clear that
when γ1 = γ2 = γ (and α1 = β1 = 0), we recover the same set of equations used in [11, 12].
Also, if in addition we have that K (t) → δδ(t), where δ(t) is the Dirac delta function, the
system of Markovian equations used in [9, 10] is recovered.

Taking the Fourier transform with respect to the x and y variables and the Laplace transform
with respect to the time t in the above equations, we obtain

sG(kx , ky, 1; s)− P(kx , ky, 1, t = 0) = γ1G(kx, ky, 2; s) + A1(kx , ky)G(kx, ky, 1; s)

− K (s)G(kx, ky, 1; s), for l = 1

sG(kx , ky, 2; s)− P(kx , ky, 2, t = 0) = A(kx, ky)G(kx, ky, 2; s) + K (s)G(kx, ky, 1; s)

− γ1G(kx, ky, 2; s) + γ1G(kx, ky, 3; s)− γ2G(kx, ky, 2; s), for l = 2

sG(kx , ky, l; s)− P(kx , ky, l, t = 0) = A(kx, ky)G(kx, ky, l; s) + γ1[G(kx, ky, l − 1; s)

− G(kx, ky, l; s)] + γ2[G(kx, ky, l + 1; s)− G(kx, ky, l; s)], for l � 3.

(2)

Here we have used the same definitions as in [9–12]. In particular we have

A(kx, ky) = 2α[cos(kx)− 1] + 2β[cos(ky)− 1],

and

A1(kx, ky) = 2α1[cos(kx)− 1] + 2β1[cos(ky)− 1].

Clearly, the above equations for G(kx, ky, l; s)] are similar to equation (2) in [10],
with K (s) instead of δ, and the unbiased γ replaced by γ1 and γ2. Therefore all results
obtained in [9, 10] remain valid for a non-Markovian dynamics when δ is replaced by
K (s), and the bias is adequately included. Namely, the Laplace transform of the variance
〈r2(s)〉plane = L[〈r2(t)〉plane] can be found as [9–12]

〈r2(s)〉plane = −
[
∂2

∂k2
x

+
∂2

∂k2
y

]

[G̃11]

∣
∣
∣
∣
kx =ky =0

. (3)
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In what follows, and in order to simplify and to focus on the joint effect of both the non-
Markovian desorption and the bias, we adopt α = β and α1 = β1 (we will finally consider the
case α1 = β1 = 0).

By using equations (3) and (12) of [10], 〈r2(s)〉plane turns out to be the ratio of two
complicated functions of s:

〈r2(s)〉plane = N(s)

D(s)
, (4)

where

N(s) = (8αK (s)γ1)
(
γ 3

1 + γ 3
2 + s3 + 3γ 2

1 s + 3γ 2
2 s + 3γ1γ2s

+ 3γ1s2 + 3γ2s2 −
√
(γ1 + γ2 + s)2 − 4γ1γ2

(
γ 2

1 + (γ2 + s)2 + γ1(γ2 + 2s)
))

+ (8α1γ1γ2)
(√
(γ1 + γ2 + s)2 − 4γ1γ2

(
γ 2

1 + 2γ1s + (γ2 + s)2
)

− (γ1 + γ2 + s)((γ1 − γ2)
2 + 2(γ1 + γ2) s + s2)

)
, (5)

and

D(s) =
√
(γ1 + γ2 + s)2 − 4γ1γ2

{√
γ1

γ2

(

(γ2 − K (s))(γ 2
1 + 2γ1s + (γ2 + s)2)

−
√
(γ1 + γ2 + s)2 − 4γ1γ2(γ2 − K (s))(γ1 + γ2 + s)

)

+
√
γ1γ2

(√
(γ1 + γ2 + s)2 − 4γ1γ2(γ1 + γ2 − K (s))

− (γ 2
1 + (γ2 − K (s))(γ2 + s)) + γ1(s − K (s))

)}2

. (6)

For P(z = 1, t), according to the result shown in [9], we have

P̃(z = 1, s) = 2γ1γ2

(
2γ1γ2s + K (s)

[
γ1γ2 + γ1

(√
(γ1 + γ2 + s)2 − 4γ1γ2 − s − γ1

)])−1
.

(7)

We reiterate that, as indicated in [9], the conservation of particles on the plane is not satisfied.
Also, the relation between ψ(t), the waiting time density, as defined in a CTRW scheme, and
the memory kernel of equation (1), in the Laplace domain reads [2] K (s)= sψ(s){1−ψ(s)}−1.

3. Asymptotic behaviour

Here we show the results, obtained via Tauberian theorems [29], about the asymptotic long
time system’s behaviour in two cases: when the waiting time function has a short or a long
time tail. We assume that, when s 
 1, ψ(s) ∼ 1 − Bsν with 0 < ν < 1 for the case of a
long tail, and ν = 1 for the short tail case. In the case of short tail waiting time densities we
have B = 〈t〉ads. Consequently, in this limit K (s) ∼ 1

B s1−ν . In this expression we still retain
the diffusion contribution on the surface (that is, we still keep that α1 = β1 �= 0).

Considering the different possibilities we have three cases: (i) γ1 > γ2; (ii) γ1 < γ2; and
(iii) γ1 = γ2 = γ.
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3.1. Short tail

• γ1 > γ2

〈r2(t)〉plane ∼
(

4(γ1 − γ2)

(γ1 − γ2 + 1
B )

2

( α

B
+ α1(γ1 − γ2)

))

t, (8)

and

P(z = 1, t) ∼
{

1 +
1

B(γ1 − γ2)

}−1

(9)

• γ1 < γ2. In this case, both 〈r2(t)〉plane and P(z = 1, t) show an exponential decay.
• γ1 = γ2 = γ

〈r2(t)〉plane ∼ 4 B α
(γ

π

) 1
2

t
1
2 , (10)

and

P(z = 1, t) ∼ B
(γ

π

) 1
2

t− 1
2 . (11)

The above results are the expected ones for a short tail case. Clearly, for γ1 < γ2 = γ , the
P(z = 1, t) decays to zero (exponentially), while for γ1 = γ2 it also decays, but much more
slowly (potentially).

3.2. Long tail

• γ1 > γ2

〈r2(t)〉plane ∼ 4 α1(γ1 − γ2)
2

γ 2
2

t + 4α
(γ1 − γ2)

Bγ 2
2 
(1 + ν)

tν , (12)

and

P(z = 1, t) ∼ 1. (13)

• γ1 < γ2

〈r2(t)〉plane ∼ 4 (B γ2)
2 α1

(γ1 − γ2)2 
(2(1 − ν))
t1−2ν + 4 B

γ1 γ2 α

(γ1 − γ2)3
(1 − ν)
t−ν , (14)

and

P(z = 1, t) ∼ Bγ2


(1 − ν)(γ2 − γ1)
t−ν . (15)

• γ1 = γ2 = γ. Here we have different asymptotic behaviours depending on the range of
values of ν.

〈r2(t)〉plane ∼






(2α)

B
√
γ
( 3

2 + ν)
t

1
2 +ν + 4α1 t, 0 < ν < 1

2

(2α)B
√
γ + 4 γ B2α1

(B
√
γ + 1)2

t ν = 1
2

4γ B2α1


(3 − 2ν)
t2(1−ν) + 2

α B
√
γ


( 5
2 − ν)

t
1
2 −ν 1

2 < ν < 1

(16)
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and

P(z = 1, t) ∼






1, 0 < ν < 1
2

B
√
γ

(B
√
γ + 1)

, ν = 1
2

B
√
γ


( 1
2 − ν)

t
1
2 −ν , 1

2 < ν < 1.

(17)

From equation (16) it can be deduced that an asymptotic sub-diffusive regime arises for all
values of ν (0 < ν < 1) except in the case ν = 1

2 , where normal diffusion takes place. As
in [12], this occurs due to the ‘competition’ between adsorption and Fickian diffusion across
the bulk. We have shown in [9] that the probability density to return for the first time to the
plane z = 1 is proportional to t− 3

2 for large times; it is the behaviour of the desorption waiting
time density function with ν = 1

2 that produces the particular value of this parameter. The
ladder trapping model [27] with infinite number of internal states is an important example
where the desorption waiting time density is characterize by a parameter ν = 1

2 .
The above-indicated asymptotic behaviour, for both short and long time tails in the waiting

time function, in addition to its intrinsic value, will help us to understand some of the numerical
results to be shown in the following section.

4. Numerical results: Laplace transform

In this section we show the results obtained numerically. As was discussed in previous
works [9, 10], for general cases, the Laplace transform of 〈r2(s)〉plane and P(z = 1, s) usually
cannot be analytically inverted. This occurs in the present case; hence we have been forced
to employ a numerical inversion method. The efficacy of such a method was established
in [9, 10], where it was shown that it is a reliable tool and that we can trust their results in those
cases where analytical results are not accessible [30]. In all cases, and in order to focus on the
competition between non-Markovian desorption and the bias, we have adopted α1 = β1 = 0.

To describe the desorption dynamics from the surface we have used two families of
waiting time densities (ψ(t)). The first one, since it was first introduced by Scher and
Lax [32] to describe the frequency dependence of the electric conductivity in disordered solids
when transport is due to impurity hopping, has been extensively exploited in modelling non-
Markovian situations (see also [29]). The reasons for its wide use are the versatile functional
form and its simplicity that allows one to take into account a spread of transition rates in a
controllable way [32]. When only one transition rate is present a Markovian description is
reobtained: the memory kernel becomes a Dirac δ-function. The form is

ψ(t) = θa
(θat)(a−1)


(a)
e−θat, (18)

where a is a positive integer and 
(a) is the Gamma or factorial function. It is worth
remarking here two important facts about this family of functions. First, as can be seen from
equation (18), there are two parameters which characterize the function. The parameter a,
called the Markovianicity parameter, defines the degree of non-Markovianicity of the function
(a = 1 corresponds to the Markovian case; a �= 1 to the non-Markovian case), while the
parameter θ is the ‘average desorption rate’. Second, as shown in [31], the mean value of these
waiting time densities is

〈t〉 =
∫ ∞

0
tψ(t) dt = θ−1, (19)
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Figure 1. Temporal evolution of P(z = 1, t), the probability distribution on the plane z = 1. Here
we have adopted α = β = 1, θ = 0.01, a = 50 and γ1 = 1. The different curves correspond,
from top to bottom, to γ2 = 0.9 (continuous line), γ2 = 1.0 (dashed line), γ2 = 1.5 (dotted line),
γ2 = 5.0 (dashed–dotted line).

Figure 2. Temporal evolution of P(z = 1, t), the probability distribution on the plane z = 1. We
have adopted the same values of the parameters as in figure 1, except that a = 20. From top to
bottom γ2 = 0.1 (continuous line), γ2 = 0.5 (dashed line), γ2 = 0.75 (dotted line).

that is the ‘average desorption time’ does not depend on the a parameter, but is only function
of the desorption rate. For the form of this family of functions, see figure 1 in [31].

Figures 1 and 2 show the dependence of P(z = 1, t) for several cases. We have adopted
α = β = 1, θ = 0.01 and γ2 = 1.0. In figure 1 we have a = 50, and analyse what happens
when γ2 is varied. The long time behaviour is in clear agreement with the asymptotic results
indicated in the previous section. In figure 2, we changed to a = 20, with similar results. The
general behaviour is similar to the case without bias [12]. However, the departure from the
unbiased behaviour when γ1 �= γ2 is apparent.

In both figures there is apparent a (small) transient oscillatory behaviour, more marked in
the second case. The origin of such oscillations has been explained in [12], and has been shown
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Figure 3. Temporal evolution of 〈r2(t)〉plane, the variance of the position �r ≡ (x, y) on the plane
z = 1. We have adopted α = β = 1, θ = 0.01, a = 50 and γ1 = 1. From top to bottom γ2 = 0.2
(continuous line), γ2 = 1.0 (dotted line), γ2 = 1.5 (dashed line), γ2 = 2.5 (dashed–double dotted
line), γ2 = 5.0 (dashed–dotted line).

to be related with θ , the desorption rate. It was indicated that the oscillations only appear in
the non-Markovian case and are due to the particular behaviour of the family of waiting time
densities defined above. When the Markovianicity parameter tends to infinity, a → ∞, it is
well known that ψ(t) tends towards a Dirac δ function: ψ(t) → δ(t − θ−1). This fact implies
a kind of ‘periodicity’, as—on average—there is a desorption after each elapsed �t � θ−1

period.
In figure 3 we show the time dependence of the variance 〈r2(t)〉plane for α = β = 1,

θ = 0.01, a = 50 and γ1 = 1, and different values of γ2. The change from a growing variance
for γ2 < γ1, until a receding variance for the opposite case γ2 > γ1 is apparent. Clearly, the
change in behaviour occurs for γ2 = γ1. Again, the departure from the unbiased behaviour
when γ1 �= γ2 becomes apparent.

In order to analyse the long time tail case, we used a second family of desorption waiting
time density functions that, defined in the Laplace domain [33], have the form

ψ(s) = 1

1 + ( s
φ
)
ν , 0 < ν < 1. (20)

However, as φ amounts to only a change in the timescale, we adopted φ = 1. We have also
fixed the parameters α, β, and γ1, all equal to one.

In figure 4 we depict the dependence of P(z = 1, t) for a long tail case, for a typical
γ2 < γ1 case, with α = β = 1, φ = 1, γ1 = 1 and γ2 = 0.8, for different values of ν. The
asymptotic behaviour determined in the previous section is clearly seen. It is interesting to
remark on a receding behaviour before the increase towards the asymptotic behaviour, a fact
that does not arise in the case without bias. In figure 5 we also depict the time dependence of
P(z = 1, t) for α = β = 1, φ = 1, γ1 = 1 and ν = 0.1, for different values of γ2. Here also,
the way that the asymptotic behaviour is reached becomes apparent. Figure 6 again shows the
time dependence of P(z = 1, t) for α = β = 1, φ = 1, γ1 = 1 and ν = 0.5, and different
values of γ2. The way the asymptotic behaviour is approached is clearly seen and, again, the
departure from the unbiased behaviour when γ1 �= γ2 becomes apparent.
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Figure 4. Temporal evolution of P(z = 1, t). We have adopted α = β = 1, φ = 1, γ1 = 1 and
γ2 = 0.8. The different curves correspond to ν = 0.1 (continuous line), ν = 0.5 (dotted line),
ν = 0.75 (dashed line).

Figure 5. Temporal evolution of P(z = 1, t). As in figure 4 we have adopted α = β = 1, φ = 1
and γ1 = 1, while ν = 0.1. From top to bottom γ2 = 0.8 (continuous line), γ2 = 1.0 (dotted line),
γ2 = 1.1 (dash–double dotted line), γ2 = 1.2 (dashed line), γ2 = 1.5 (dash–dotted line), γ2 = 2.
(short-dashed line).

In figure 7, the time dependence of the variance 〈r2(t)〉plane for α = β = 1, φ = 1,
γ1 = 1 and γ2 = 10 and different values of ν is shown. The corresponding diffusive and
sub-diffusive behaviour for the different values of ν is apparent. Finally, in figure 8 we show
the time dependence of the variance 〈r2(t)〉plane for α = β = 1, φ = 1, γ1 = 1 and ν = 0.5,
for different values of γ2. The collapse for γ2 > 1 (that is for γ2 > γ1) is clearly seen.

5. Conclusions

We have studied the evolution of particles making an effective diffusion on a surface. The
diffusion is actually performed both on the surface and across the bulk surrounding the surface,
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Figure 6. Temporal evolution of P(z = 1, t). Here, as in figure 4, we have adopted α = β = 1,
φ = 1 and γ1 = 1, while ν = 0.5. From top to bottom γ2 = 0.8 (continuous line), γ2 = 1.0
(dash–dotted line), γ2 = 1.1 (dashed line), γ2 = 1.5 (dash–double dotted line), γ2 = 2 (dotted
line).

Figure 7. Temporal evolution of 〈r2(t)〉plane. We have adopted α = β = 1, γ1 = 1 and γ2 = 10.
From top to bottom ν = 0.1 (continuous line), ν = 0.25 (dashed line), ν = 0.5 (dash–dotted line),
ν = 0.75 (dotted line), ν = 1.0 (short dash–dotted line).

resulting in the so-called bulk-mediated surface diffusion phenomenon. The main feature of
this work was to present an analytical model for non-Markovian desorption from the surface,
also including the effect of an external (normal to the surface) field, through a biased behaviour
in the normal direction. For the bulk that surrounds the surface we have considered that it is
semi-infinite, and that the particles undergo a Markovian motion there.

We observed the influence of both effects on the effective diffusion process at the interface
z = 1 by calculating analytically, in the Laplace domain, the temporal evolutions of 〈r2(t)〉plane,
the variance, and P(z = 1, t), the conditional probability of being on the surface at time t since
the particle arrived there at t = 0. We have chosen two families of non-Markovian desorption
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Figure 8. Temporal evolution of 〈r2(t)〉plane. We have adopted α = β = 1, γ1 = 1 and ν = 0.5.
From top to bottom γ2 = 0.9 (continuous line), γ2 = 1.1 (dash–double dotted line), γ2 = 1.5
(dashed line), γ2 = 2.5 (dotted line), γ2 = 5.0 (dash–dotted line).

waiting time densities and analysed the numerical evaluation for 〈r2(t)〉plane and P(z = 1, t).
One desorption waiting time density has a finite first moment, while the other corresponds to
a waiting time density for desorption that has an infinite first moment. We have been able to
deduce the asymptotic behaviour in both cases, determining regions of values of the parameter
ν, obtaining asymptotic sub-diffusive regimes, or cases where normal diffusion takes place.
However, from our analysis we have not obtained any kind of super-diffusive behaviour. The
numerical results are in agreement with the indicated asymptotic ones.

Recent nuclear magnetic spin–lattice relaxation experiments [21] have been performed
in partially filled porous glasses with wetting and non-wetting fluids. Basically they have
demonstrated the existence of three mobility states of the fluid molecules: the adsorbed
states at the pore walls, the bulk-like liquid phases and the vapour phase. The adsorbate
spin lattice relaxation rate, usually denoted as the reorientation mediated by translational
displacements (RMTD) mechanism, takes place at the adsorbate–matrix interface. The
relaxation experimental data have been analysed in terms of molecular exchanges between the
different mobility states. The spin–lattice relaxation rates allowed the authors to distinguish
two limits, low and fast exchanges (relative to the RMTD timescale).

Finally, it is worth remarking here an important aspect of the present approach. Through
the above results we have shown that the behaviour of 〈r2(t)〉plane and of P(z = 1, t) are strongly
dependent on both the desorption mechanism and the effect of bias. As the effective dispersion
and the percentage of particles that remain in z = 1 are measurable magnitudes [14], they may
be used to investigate the characteristic and fundamental parameters of the desorption processes
under the effect of a field. The present experimental techniques [21] are very sensitive and
able to produce highly precise measurements of quantities directly related to those evaluated
in the theory, like effective diffusivities, and in this way to test the theory.
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